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ABSTRACT

Recent improvements in deep learning for remote sensing have shown that it is
possible to detect individual trees using high resolution satellite remote sensing
data. However, there has not been an evaluation of the robustness of individual
tree detection methods to distribution shifts across varying geographies, and this
limits the applicability of these methods to diverse areas beyond the sites in which
they were trained. To address this, we introduce a benchmark dataset comprising
varying agro-ecological zones for remote sensing tree detection in agroforestry
farms in India. We then use this dataset to conduct a geographic robustness eval-
uation of out-of-distribution performance of different deep learning approaches
for remote sensing tree detection. Results indicate strong performance of deep
learning in detecting trees under conventional evaluation, yet a significant drop
in performance in out-of-distribution agro-ecological zones for baseline methods.
We report some improvements with foundation model based approaches including
SAM and Grounding DINO, but find that they also exhibit similar performance
drops out-of-distribution. Our study pushes the boundaries of current research
by challenging machine learning methods with a dataset and evaluation protocol
that better represents real-world variability, shedding light on the robustness and
adaptability of different individual tree detection methods.

1 INTRODUCTION

Agroforestry, or integrating trees and crops together into agricultural systems, has been promoted as
a high-potential solution for scaleable carbon removal (Chapman et al., 2020) with many co-benefits
(Nair & Garrity, 2012) (Hendershot et al., 2023). However, there currently exists limited data on
the extent and type of different agroforestry practices (Hart et al., 2023). In the past, remote sens-
ing data has been too low resolution to distinguish between different types of agroforestry practices
that involve the integration of trees with other crops in farmland (Schnell et al., 2015). As Bégué
et al. (2018) note, “Agroforestry is a challenging cropping system to monitor using remote sensing
because of its spatial heterogeneity and complexity. . . ” However, earth scientists have recently re-
ported large accuracy improvements for detection of individual trees using deep learning algorithms
and high resolution satellite imagery (Brandt et al., 2020). These advances open up the prospect of
monitoring every tree on earth (Hanan & Anchang, 2020) and have enabled entirely new applica-
tions like quantifying the total stock of carbon in all of the individual trees continental North Africa
(Tucker et al., 2023). However, these large-scale applications require accuracy that is unbiased over
large areas, whereas in monitoring, reporting, and verification (MRV) of carbon removal from agro-
forestry practices, local accuracy in the area of a particular project is more important (Hart et al.,
2023). Brandt et al. (2020) noted that “Owing to the high latitudinal variations in vegetation and soil
background and to avoid misclassifications in the very sparsely vegetated Sahara desert, we trained
two separate models,” but they provide little explanation for how they chose what training data to
use for the two separate models, nor do they release the training and evaluation datasets or accuracy
of these models in different geographic areas. This means that despite methodological advances, re-
searchers who are applying machine learning to remote sensing data to detect individual trees find it
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difficult to evaluate the extent to which different tree detection methods or datasets are robust across
varying geographies. The machine learning community has identified this problem under names
including distribution shifts (Koh et al., 2021), domain adaptation (Ganin & Lempitsky, 2015), and
transfer learning (Xie et al., 2020). It has been recognized as a significant bottleneck to realizing
the full potential of real-world remote sensing applications (Koh et al., 2021). Inspired by these is-
sues, we start with quantifying how baseline deep learning approaches for object detection perform
at individual tree detection using 50 cm satellite imagery (Labs, 2024) and show that it achieves
comparable performance to Brandt et al. (2020). We then compare in-distribution performance on
agro-climatic zones in which the model was trained to out-of-distribution performance in other agro-
climatic zones, and we find a significant drop in performance out-of-distribution. Finally, we apply
recently released computer vision foundation models including Segment Anything and Grounding
DINO to our benchmark and find that though they slightly improve accuracy, there persists a large
difference between in-distribution and out-of-distribution performance. Our main contributions are
(1) a geographic distribution shift benchmark dataset for detecting individual trees across differ-
ent agro-climatic zones with evaluations for baseline methods and (2) an empirical investigation
demonstrating that though computer vision foundation models slightly improve adaptation to geo-
graphic distribution shifts under different fine-tuning and few-shot settings, they remain vulnerable
to geographic distribution shifts.

1.1 RELATED WORK

Recently, Ouaknine et al. (2023) published OpenForest: A data catalogue for machine learning
in forest monitoring which provides a thorough review of publicly available forest remote sensing
benchmark datasets. These datasets are highly concentrated in western countries, and they find only
two datasets that enable object detection of individual trees: the NEON Tree Evaluation (Weinstein
et al., 2019), an individual tree detection aerial imagery dataset published by the US Government
network NEON, and Reforestree (Reiersen et al., 2022), a tree object detection dataset collected
from aerial images with 2 cm resolution. Though these have been important contributions, their
quality and consistency is low upon closer inspection, and they have limited geographic diversity,
which is essential to real-world applications. A significant recent contribution was Beery et al.
(2022), the first tree species classification dataset to explicitly integrate geographic distribution shift
evaluations. However, this dataset focused on species classification and ignores the task of individ-
ual tree detection, which is required for monitoring agroforestry systems. There have been many
methods proposed for improving robustness to distribution shift. Some of them such as meta learn-
ing (Russwurm et al., 2020) and unsupervised learning (Ganin & Lempitsky, 2015) have demon-
strated promising results in addressing specific distribution shifts, while other systematic studies of
domain adaptation methods find that most adaptation methods provide little performance improve-
ment out-of-distribution (Taori et al., 2020). Some have reported large improvements in accuracy
out-of-distribution from using foundation models (Radford et al., 2021) (Li et al., 2022) (Zhao et al.,
2023), but the extent to which foundation models address geographic distribution shift issues in
remote sensing remains under-explored.

2 DATASET

We frame the individual tree detection problem as an object detection task where the model predicts
bounding boxes for each individual tree. To achieve this, we worked with local partners to construct
a ground truth annotated dataset of satellite images from agricultural land in Rajasthan, India, where
different forms of agroforestry are a common agricultural practice across the state. We source RGB
Skysat images (50cm spatial resolution) from the Planet Labs API. To ensure that we could evaluate
performance under geographic distribution shift, we conduct a stratified random sample of imagery
from the state of Rajasthan according to a map of 8 agro-climatic zone boundaries based on a clas-
sification used by the state government, using some filters we detail in supplement Section 1. Then,
we break these scenes into 400 x 400 pixel RGB images for annotation. We trained two annotators
to use the CVAT platform (Corporation) to annotate individual segmentation masks for each green
tree crown in the image. Following Brandt et al. (2020) we require each tree to have an associated
shadow to aid visual distinction between trees and other vegetation such as shrubs. To ensure our
tree annotations were high quality, we double annotated 400 images and measured inter-annotator
agreement of 86 AP, setting a baseline for human performance and ensuring annotation consistency.
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For ground-truth field data comparison, we also collected field data tree inventories for 38 field plots,
and found that 94 percent of trees tagged in the field were correctly detected.

Figure 1: Example Images from different Agro-climatic zones.

3 METHODS

To conduct a distribution shift evaluation, we split our dataset of images for each of Rajasthan’s 8
agro-climatic zones into train and test images. We then split the zones into 4 In-Distribution (ID)
zones and 4 Out-of-Distribution zones (OOD), as shown in figure 1. We train under 3 evaluation
settings. 1) Conventional Model Evaluation: Train on training splits for all zones, evaluate on test
splits for all zones. This is similar to the type of cross-validation that is standard in most machine
learning for remote sensing research. 2) Distribution shift Evaluation: Train on train splits for ID
Zones, Test on test splits for ID Zones vs. OOD Zones. This evaluation will measure the difference
between performance on the ID test set sampled from the same agro-climatic zones the model was
trained on to with the OOD test set sampled from agro-climatic regions outside the one in which it
was trained. 3) Few-shot adaptation evaluation: Train on train splits for ID Zones, plus k examples
from the training splits of each of the OOD zones. We report Average Precision, a common object
detection evaluation metric. We also measure Tree Count R2 to directly compare accuracy metrics
to the results from Brandt et al. (2020) The conventional evaluation exactly matches the evaluation
protocol of Brandt et al. (2020), so these results will confirm whether or not we reproduced the tree
detection accuracy levels from the recent nature article using deep learning to map trees. For our
baseline, we train a faster-rcnn model (we report hyper-parameters in the supplements). For our
foundation model experiments, we select two foundation models that have been influential in recent
computer vision research: the Segment Anything Model (Kirillov et al., 2023) and Grounding DINO
(Zhao et al., 2023). Inspired by recent work demonstrating that fine-tuning foundation models can
sometimes reduce their performance out-of-distribution, for each model (Kumar et al., 2022), we
perform finetuning under three different settings: full fine-tuning, head fine-tuning with a frozen
backbone, and head fine-tuning then full fine-tuning. We can directly fine tune Grounding DINO
as it is an object detection model, but because the Segment Anything Model requires a prompt
embedding, we add a mask-rcnn head on the SAM encoder to perform automatic object detection.

4 RESULTS

As shown in Figure 2, We find that the faster-rcnn baseline achieves 0.91 Tree Count R2 on the
conventional evaluation ID test set, comparable to Brandt et al. (2020) achieving 0.95 Tree Count
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(a) Figure 2: Predicted vs. true tree counts on the
in-distribution test set, the same evaluation proto-
col as Brandt. Et. al, Nature

(b) Figure 3: Few-shot OOD Evalu-
ation of Grounding DINO (blue) and
Faster-RCNN (orange)

R2, which suggests our model is close to theirs. This means that recent advances in tree detec-
tion are relatively reproducible with baseline methods as long as a big enough high-quality ground
truth dataset is present. When we compare the out-of-distribution results for the model trained on
all zones with the model just trained on in-distribution zones, we observe more than a 20 percent
drop in performance. This suggests that although baseline supervised deep learning methods show
strong performance when measured under traditional model evaluation, they are highly vulnera-
ble to reductions in performance under geographic distribution shift. However, the fact that even
the conventional evaluation performs 10 percent lower on the out-of-distribution set also suggests
that different areas might have different inherent levels of difficulty, and we report a wide range of
accuracy in agro-climatic zones in Supplementary Table 1.

Table 1: Comparison of In-Distribution and Out-of-Distribution Average Precision

Method Eval type ID AP OOD AP
Faster-RCNN Conventional Eval 0.778 0.631
Grounding DINO Conventional Eval 0.821 0.667
Faster-RCNN Dist shift eval 0.778 0.441
SAM Finetune Full Finetune Dist shift eval 0.781 0.485
SAM Finetune Head Dist shift eval 0.777 0.483
SAM Finetune Head then Full Dist shift eval 0.592 0.417
Grounding DINO Full Finetune Dist shift eval 0.814 0.495
Grounding DINO Finetune Head Dist shift eval 0.810 0.505
Grounding DINO Finetune Head then Full Dist shift eval 0.808 0.487

As shown in table 1, both SAM and Grounding DINO slightly improve over the faster-rcnn model
both in-distribution and out-of-distribution, but they still show a similar pattern of large differences
between in-distribution and out-of-distribution performance. When we perform the few-shot evalu-
ation in Figure 3, we find that the grounding DINO model gives larger gains on out-of-distribution
data when no data from that domain is available, suggesting that foundation models may be slightly
more robust than baseline object detection models. However, baseline performance comes close to
matching grounding DINO with 10 in-distribution examples, suggesting that getting small amounts
of in-domain data can compensate for adaptation to distribution shifts.

5 DISCUSSION

These results suggest that high overall accuracy metrics using traditional cross-validation for deep
learning tree detection models can hide poor out-of-distribution generalization performance. Though
foundation models did slightly improve performance, these improvements are not large enough not
justify their increased scale and cost. Perhaps foundation models that are trained on diverse re-
mote sensing data can provide the generalization that they have demonstrated in other distribution
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shift evaluations, but further work is needed evaluating approaches to solving distribution shift chal-
lenges in remote sensing applications in machine learning. We hope that our benchmark will enable
researchers who are interested in machine learning for remote sensing of trees to measure the extent
to which the approaches they develop can improve robustness to geographic distribution shift.
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